Arctic advantage: genetic traits help Inuit in harsh conditions

WASHINGTON The Inuit, a group of people who make the Arctic their home, have benefited from a handy set of genetic adaptations that help them survive in some of Earth's harshest conditions.

Scientists on Thursday said a study of the genomes of Inuit from Greenland revealed unique genetic variants related to fat metabolism that ward off cardiovascular disease that otherwise could be caused by a diet traditionally high in fat from blubbery seals and whales.

These genetic mutations, which the researchers said arose perhaps 20,000 years ago, help lower "bad" LDL cholesterol and fasting insulin levels, limit the height of the Inuit, keep down their weight and help them adapt to a cold environment.

"Our study is perhaps the most extreme example to date of a genetic adaptation to a specific diet," said computational biology professor Rasmus Nielsen of the University of California, Berkeley and the University of Copenhagen.

"The mutations we find seem to compensate physiologically for a large intake of animal fat and are largely an adaptation to a lifestyle in which you have a high-caloric intake of fat from marine mammals, and possibly also from other mammals."

The Inuit, formerly called Eskimos, are indigenous people in Greenland and Arctic regions of Canada and Alaska.

The researchers examined genomes of 191 Inuit, 60 Europeans and 44 Han Chinese. The genetic variants found almost universally in the Inuit were much rarer in the Europeans (2 percent) and Chinese (15 percent).

The research, published in the journal Science, is the latest to illustrate human genetic adaptation to environmental conditions.

"One of the best examples is the Tibetans' adaptation to high altitude," said University of Copenhagen computational biology professor Anders Albrechtsen, referring to a study showing that many Tibetans possess a rare variant of a gene involved in carrying oxygen in the blood, helping them in high-altitude, low-oxygen conditions.

The Inuit findings may shed light on the value of diet supplementation with omega-3 fatty acids and fish oils. Nielsen noted such supplementation was originally motivated by observations that Inuit people had a high intake of fat but low cardiovascular disease incidence, so the particular form of fat they got in their diet might be healthier than other kinds.

"Our study shows that lessons from the Inuit cannot be extrapolated to other populations. The Inuit have special genetic variants that might allow them to function better on a diet rich in omega-3s than other populations," Nielsen said.

(Reporting by Will Dunham; Editing by Eric Walsh)

Boeing rejects Aerojet Rocketdyne bid for ULA launch venture

NATIONAL HARBOR, Md. Boeing Co (BA.N) on Wednesday said it had rejected an unsolicited bid from Aerojet Rocketdyne Holdings Inc (AJRD.N) for United Launch Alliance, a 50-50 rocket launch venture of Boeing and Lockheed Martin Corp (LMT.N)."The unsoli...

First manned test flight of new deep-space capsule likely delayed: NASA

CAPE CANAVERAL, Fla. The first manned test flight of NASA's new deep-space Orion capsule faces a likely two-year-year delay until 2023 due to development and budget concerns, officials with the U.S. space agency said on Wednesday.

The capsule, along with its multibillion-dollar heavy lift launcher, are the most expensive parts of a long-term U.S. human space exploration initiative leading toward a crew landing on Mars in the mid-2030s.

NASA had been aiming for its first crew test flight of Orion in August 2021. But on a conference call Wednesday, NASA Associate Administrator Robert Lightfoot told reporters the agency had lost confidence in that date.

Given technical, financial and management hurdles the capsule will face during development, he said an April 2023 launch date now seemed more likely.

NASA plans to spend another $6.77 billion between October 2015 and April 2023 for two of the new Orion capsules, which are currently under development by lead contractor Lockheed Martin Corp.

The agency has already has paid $4.7 billion for Orion design and development, Lightfoot said.

He said an unmanned Orion was still scheduled for liftoff in December 2018, carried aloft by a Space Launch System (SLS) rocket that is the focus of a separate $7 billion development effort.

NASA intends to first test an Orion capsule in a lunar orbit, then use it for a mission to rendezvous with a boulder that has been robotically plucked from the surface of an asteroid and positioned into an distant orbit around the moon.

“We’re really trying to build a program,” said William Gerstenmaier, NASA associate administrator for human exploration and operations. “Ultimately, we’d like to get where we’re flying these missions about once per year.”

NASA last year announced an expected year-long schedule slip for the debut flight of the SLS rocket, previously targeted for November 2017.

So far, the agency has not provided cost estimates for any missions or production cost beyond the first test flight of Orion, the U.S. Government Accountability Office said in a report issued in July.

NASA spent about $9 billion between 2005 and 2010 on a previous human space exploration initiative called Constellation. That included $5.8 billion for an earlier version of Orion.

(Reporting by Irene Klotz; Editing by David Adams and Tom Brown)

Sugar beet waste product could be billion dollar ‘wonder material’

A Scottish company which has developed a material made from sugar beet waste believes the sky is the limit - literally. Cellucomp says its Curran product is twice as strong as carbon fibre and could one day be used to make airplane wings.

Curran was invented by Cellucomp co-founders Dr David Hepworth and Dr Eric Whale, a pair of Edinburgh-based scientists looking to create a composite to rival carbon fibre. But having proved the principle of Curran's strength by making a commercially available fly fishing rod, they have since concentrated their efforts on developing a product for the paints and coatings industry.

According to Cellucomp chief executive Christian Kemp-Griffin, Curran's physical strength, combined with its viscosity when added to liquids and composites, make it unique.

"Curran is a material that is derived from nanocellulose particles - root vegetables," said Kemp-Griffin. "Now when you get down to that very, very small size you actually get incredible strength properties. So when we put the resulting product that we have into other products, as an additive that goes into other products, it actually adds strength to those products, as well as adding viscosity, and there is no other product that will do both things at the same time."

Curran is the Gaelic word for carrot, which was the first root vegetable that Hepworth and Whale experimented with, due to its easy availability in shops. They moved onto sugar beet, due to the sheer volume of extracted waste in factories from sugar production.

Approximately 20 percent of sugar is derived from sugar beet root globally.

Wood is used by other nano cellulose manufacturers, but Hepworth says beet is preferable because it grows quickly and breaks down easily, and as the vast majority of the plant is wasted there is a positive environmental impact.

"It takes less energy to produce this material than it would to make nanocellulose from something else, like trees, so we're trying to do this in a very energy-minimising way, which is good for the environment and it's good for us because it saves costs of production, so we can potentially produce a cost-effective material and that opens a number of markets," said Hepworth.

The firm has a new factory just outside Edinburgh, which is able to produce 400 tonnes of Curran powder per year, a substantial amount considering how little is actually needed in any product. For instance, it makes up less than one percent of the ingredients of the paint developed by Curran and paint company Whitson’s. Cellucomp wants to expand production to 2,000 tonnes annually within three years, having received much interest internationally from large manufacturers.

"The feed stock that we use is from a sidestream from the sugar producing industry," said Hepworth. "It's the waste pulp that comes after they're removed the sugar, which is then pressed and dried into pellets for ease of shipment. So you can see the bottom of this stack here I've got the dried pellets. So that can be used as a low-grade cattle feed, but obviously we want to take this material and turn it into something that has a lot more value."

Hepworth says that although sugar beet factories, mainly in Europe, create large amounts of waste pellets, they are looking into other natural materials from which fibre could be extracted, such as potatoes and palm fruit.

Kemp-Griffin says Curran can be used for hundreds of applications. "There are all kinds of potential applications that Curran can be used for," he said. "It can go into things like paint and coatings, it can go into concrete, cosmetics. It can even be used for drilling fluids, as an additive to go into your food, and go into composites. So you can imagine one day airplane wings made from Curran."

Arguably the largest current market for Curran is the £2 billion paint and coating additives industry. Cellucomp have already linked up with paint manufacturers Whitson to create a new range of paints, set to go on the market shortly.

Whitson's founder - and famous decorating guru - Cait Whitson says adding Curran to her paint's ingredients has had multiple benefits, in addition to being environmentally friendly. Curran makes up 0.6 percent of her paint's ingredients.

According to Whitson, "one of the things that excited me about the Curran product was that a very small amount of Curran adds a significant amount of durability to the paint product. Secondly was the rheology, about how the paint flowed from the brush, how it flowed from the roller, what it was like to use, really I wanted a paint that over any substrate, however sucky or dry or very absorbent emulsions that you can work over that it didn't drag, and that has really come out with the Curran," she said.

Whitson says Curran helps make paint scrub-resistant, avoids unsightly brush marks, and prevents cracking, particularly in so-called 'putty' paints used widely in the Middle East.

Cellucomp has received major financial backing from the Scottish government and its economic development offshoot Scottish Enterprise, and now believes it is on the way to potentially becoming a billion-dollar company.

The company is also looking to use Curran to reinforce recycled paper.

In warming Arctic, mosquitoes may live long and prosper

WASHINGTON Rising temperatures at the top of the world may be bad news for Arctic denizens like polar bears, but good news for the local mosquitoes, pesky bloodsuckers that prosper with warmer weather.Researchers said on Tuesday that increasing temp...

New dinosaur species a rare find in Tanzania

Scientists have discovered a new species of dinosaur that lived about 100 million years ago and may have weighed as much...

Recent Posts